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ABSTRACT

k| . Circularly polarized bistatic scattering from plane-symmetric targets
with otherwise arbitrary electrical properties exhibits reflection asymmetries

: and polarization reversal symmetries which are useful for bistatic radar data
interpretation. In addition, the symmetries can be used to reduce the time
and expense in obtaining bistatic scattering data from static range measure-
= ments and theoretical or computer calculations.

The reflection asymmetry and polarization reversal symmetry relations
are derived in this note. The symmetry relations are then combined with the
principle of electromagnetic reciprocity to determine the minimum number of

measurements needed to completely characterize target scattering.
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i INTRODUCTION

Consider a target with arbitrary electrical properties that exhibits
symmetry about a plane. Without loss of generality, the symmetry plane can
be taken to be the x-z plane of a right-handed x-y-z cartesian coordinate
system whose origin is at the target center of mass. The direction of the
z axis can be chosen in whatever manner is convenient, e.g., along a principal
or unique axis of the target.

When the transmitter line of sight is in the symmetry plane, circularly
polarized scattering is asymmetric about the plane, i.e., identical circularly
polarized receivers at positions (x,y,z) and (x,-y,z) in the far field of the
target will generally measure different cross sections and phases. When the
relationship between the scattered far field components and the incident

components is expressed via the scattering matrix relation

s i
Eo (x,y,2) aRR(x,y,z) aRL(x,y,z) Ep
= ’ (1)
E °(x,y,2) a__(x,y,2) (x,y,2) E
L Yo LR X:Y, aLL X:¥e2 e
the principle of reflection asymmetry implies that, in general,
aij(x.-y,z) # aij(x,y.z) y#¥o0 . (2)

A derivation will be provided in the Sections II - VII. It will also be shown

that there is reflection symmetry under polarization reversal, i.e.,

aLR(x,-y,z) = aRL(x,y.z)
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and iy

aRR(x,-y.z) = aLL(x.y,z) .

It follows from these results that

aRL(x.o,z) aLR(x.O.z)

and (4)

aLL(x.O.z) aRR(x.O.z)

but, in general,

aRL(x,le) # aLR(x,YrZ)

and (5)

aLL(x.y.Z) # aRR(x.y.z) ;

The relations in Equations 2 and 3 are derived in Sections II-VII for a
plane-symmetric target with arbitrary electrical properties. Circularly
polarized field components are decomposed into linearly polarized components
in Section II. Symmetry properties of electric current components induced
by linearly polarized incident field components are obtained in Section III
by invoking heuristic symmetry arguments. However, a mathematical derivation
is provided in the appendix for the important case of a perfectly conducting
target. In Section IV symmetry properties of the scattered magnetic vector
potential are obtained from those of the induced electric current. The con-

cept of electromagnetic duality is introduced in Section V and used in




Section VI to obtain the symmetry properties of the induced magnetic current
and scattered electric vector potential from those of the induced electric
current and scattered magnetic vector potential. The symmetry properties of
the scattered electric field are finally obtained in Section VII from the
symmetry properties of the scattered magnetic and electric vector potentials.
Additional symmetry relations are obtained in Section VIII for bodies of
revolution by combining the principles of polarization reversal symmetry and
electromagnetic reciprocity. In Section IX symmetry relations are used to

determined the minimum number of measurements needed to completely charac-

terize target scattering.




IT. LINEAR POLARIZATION DECOMPOSITION

The proof of Equations 2 and 3 is most easily accomplished by decomposing
the circularly polarized fields into a superposition of linearly polarized
fields. The incident electric field is decomposed into components polarized
either parallel or perpendicular to the incidence plane which is the symmetry
plane of the target. The scattered electric field is decomposed into compo-
nents polarized either parallel or perpendicular to the scattering plane
containing the z axis and the receiver line of sight.

It will be convenient to use spherical coordinate notation for the inci-
dent and scattered fields. Accordingly, the terms "0" and "¢" polarization
will be used for horizontal and vertical polarization, respectively. The
four spherical electric field components are illustrated in Fig. 1.

For exp(iwt) time variations the relationship between the circular and

linear components is given by

i : |
Ee 3 1 1 ER
= :;: (6)
i 2 3 i
E¢ i -i EL
and
s s
ER 3 1 i Ee
= ;: s (7)
s 2 s
EL 1 -i E "

The relationship between the scattered and incident linearly polarized fields

is expressed in terms of the linear polarization scattering matrix relation
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Fig. 1. 0 and ¢ polarized components of the incident and scattered
electric fields.
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Eg 339 2g¢ )
= (8)

E a a
¢ o6 “o¢ ¢
If the scattered field is known when the incident field is either 6 or

¢ polarized, normalization by the incident field amplitude yields the corres-

ponding scattering matrix component, e.g.,

i
» = E E 9
ae¢ 8¢/ 6 (9)
where
- S
By = Sy
Eei " (10)
E¢i 2 a

Once the linear polarization scattering matrix is known, the circular

polarization scattering matrix in Equation 1 can be obtained from

aRR aRL & 1 i aee a6¢ 1 1
- (11)
aLR aLL 1 =i a¢e a¢¢ i -i
Therefore, :

A

& = 5 {ae6 gt 1(ae¢ - a¢e)} ’ [
’

8 = 3 {aee *ag, i(ae¢ - a¢9)} ’




+ i (a

e¢+a¢e)} ’

|-

e {aee - a¢¢
and (12)
)}

= a

N =

a =

LL lagg - ayy = 1 (agy + a4

Consequently, the circular polarization reflection properties in Equations 2

and 3 can be readily determined from the properties of the linearly polarized

scattered fields.




8 i 1) INDUCED ELECTRIC CURRENT SYMMETRY

In this section, induced electric current symmetry is obtained from
symmetry arguments.

Consider the y symmetric profile of the target as illustrated in Fig. 2.
If the incident electric field is polarized either parallel or perpendicular
to the x-z plane, the cartesian components of induced volume and surface
currents must be either even or odd in y. If the incident electric field

s :
is ¢ (perpendicular) polarized, E' = E¢1§, JY¢ is even in y, and Jx¢ and
Jz¢ are odd in y. For 6 (parallel) polarization, El = Eel(coseTx - sinGTﬁ),
Jye is odd in y, and Jxe and Jze are even in y. These symmetries are
summarized in Table 1.

A mathematical derivation of the induced electric current symmetries

for a perfectly conducting target is provided in the appendix.




X-2
PLANE

Fig. 2. y symmetric profile of a target that exhibits mirror
symmetry about the x-z plane.




TABLE 1

LINEAR POLARIZATION y REFLECTION SYMMETRIES*

Even Reflection Symmetry 0dd Reflection Symmetry
I’ Axe Jx¢' Ax¢
Iyer Pyo Jyer Pyo
Iz0° A0 Jz¢' Az¢
Ao’ Roo 0" "oo
Mx¢’ Fx¢ Mo’ er
"yer Fyo "' Fyo
Mz¢' Fz¢ M6’ Fzp
Foo "o Foo" Fop
Foo’ 9o Foo’ Foo

- induced electric current

- scattered magnetic vector potential

induced magnetic current

- scattered electric vector potential

m o= X P g
)

- scattered electric field

*The second subscript denotes incident electric field polarization.
0 polarization - parallel to the x-z plane.
¢ polarization - perpendicular to the x-z plane.




IV. MAGNETIC VECTOR POTENTIAL SYMMETRY

In this section induced electric current symmetry is used to deduce
magnetic vector potential symmetry.
The volume current contribution to the ith cartesian component of the

scattered magnetic vector potential is given by

£0x*,2") -ikR

e (13)
A (x,y,2) = ﬁ[/dx'dz' &y Ty Ehy
- X

v, z")

where

R = \I(x-x')2+(y-y-)2+(z-z-)2 ; (14)

if Ji(x',y',z') is even in y' only the even part of R—lexp[-ikR] with
respect to y' survives the y' integration. Since this part is also even in
Y Ai(x,y,z) will also be even in y. Similar arguments hold when Ji(x',y',z')
is odd and for surface current contributions to A. Therefore, as indicated
in Table 1, the cartesian components of K(x,y,z) have the same y symmetry
properties as the corresponding cartesian components of E(x,y,z).

>
The transverse spherical components of A are given by

A, = Zp 2, _LE,
) £p % Tp Yy E 2
and (15)
= Y x
A, = -<L£a +=n2
¢ px  py
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symmetry properties of the cartesian components in Table 1 yields

Aee and A¢¢ are even in y
and (16)

A6¢ and A¢9 are odd in y

which are summarized in Table 1.
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V. ELECTROMAGNETIC DUALITY

In this section the concept of electromagnetic duality is introduced
so that the symmetry properties of the induced magnetic current and electric
vector potential can be obtained from those of the induced electric current
and magnetic vector potential.

Two equations of the same mathematical form are called dual equations.

Quantities occupying the same position in dual equations are called dual
quantities [Ref. 1, p. 98]. The duality of the electric and magnetic

quantities in Table 2 follows from the symmetry of the Maxwell equations

> -ﬁ ‘ﬁ
E - ¥
> = j (17)

with the solutions

5 & &
(E =-iw [T+ 2 w] . i +V g 2 (18)
H X2 -F *\ 2/ ' k" = wpe

where

e 5
A -uJ
2 .2
(v + x ](F = ( E—,;) : (19)

<>
and I is the unit dyadic defined by
- e AN AN AN
I = XX + yy + 22 . (20)
A systematic replacement of the electric and magnetic quantities in one column

of Table 2 by the corresponding magnetic and electric quantities in the other

column merely causes the Maxwell equations to be interchanged. Therefore a




TABLE 2

ELECTROMAGNETIC DUALITY RELATIONS *

> >
E H
b4 o
" -E
> ->
J M
->
M -3

™
=

o €
> =5
A -F

3
F A

*Replacing all of the quantities in one column by the
corresponding quantities in the other column causes the
Maxwell curl equations to be interchanged.

1 14
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known relationship between quantities in one column also exists between the

dual quantities in the other column.

o BN AN R

15




VI. SYMMETRY OF INDUCED MAGNETIC CURRENTS AND ELECTRIC VECTOR POTENTIAL
The symmetries of the induced magnetic currents and electric vector potential
summarized in Table 1 are obtained from the duality relations in Table 2 and

the fact that when Ei is B polarized, ﬁl is ¢ polarized and vice versa.

“ 16
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VII. LINEAR POLARIZATION SCATTERED FIELD SYMMETRY
In the far field, the electric field expression in Equation 18 reduces

to

"S SR 3 ~ ~
E> = 1w{(Ae Y]F¢)9 + (A¢ + nF9)¢} (21)

where n = Vu/e . Therefore. the transverse spherical components of
->
Es(x,y,z) have the same y reflection properties as the transverse spherical

%
components of A(x,y,z). Consequently, as summarized in Table 1,

Eee(x,y,z) and E¢¢(x,y,z) are even in y

and (22)
E¢e(x,y,z) and Ee¢(x,y,z) are odd in y .

Combining these results with equations of the type found in Equations 9 and

10 yields
agg * a¢¢ are even in y

and (23)

+

a a_, are odd in y.

6¢ 0

The proof of Equations 2 and 3 follows from combining Equations 12 and 23.

17
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VEEE. SYMMETRY RELATIONS FOR BODIES OF REVOLUTION

When applied to electromagnetic scattering, the principle of electro-
magnetic reciprocity requires that cross sections and phases remain unchanged
when the roles of transmitter and receiver are interchanged [Ref. 2, p. 252].
In this section the principles of electromagnetic reciprocity and polarization
reversal symmetry are combined to obtain additional symmetry relations for
bodies of revolution,

When the target is a body of revolution, it is convenient to make the
z axis the axis of revolution. For a transmitter and receiver in the
spherical coordinate directions (GT, 0) and (GR, ¢R), respectively (see

Figure 3), scattering matrix amplitudes have the form

-ikr ;
& e RO
a5 (BT, r, OR, ¢R) = ————-—:;—— “Uij e "ij (24)
4 mx

where oij and pij are the corresponding cross sections and range independent
phases. In the following the variation with r will be ignored and symmetry
relations with respect to the scattering angle triplet (ST, OR' ¢R) will be
obtained.

When the positions of the two antennas remain fixed but the roles of
transmitting and receiving are interchanged, the new transmitter and receiver

spherical coordinate directions are (OR, 0) and (eT, -¢R), respectively. The

e

transmitter and receiver aspect angles are interchanged and the receiver

azimuth angle changes sign, i.e.,

18
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18-3-20434

N>

RADAR ASPECT ANGLE COORDINATES (GT'OR' ¢R,)

forward directed principal axis unit vector of target
cartesian coordinate unit vectors

unit incident wave vector

unit scattered wave vector

transmitter (monostatic) aspect angle

receiver aspect angle

receiver to transmitter azimuthal angle

Fig. 3. The radar aspect angle coordinate system.
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4

(GT, GR, ¢R) =+ (8, 8, =) ~ (25)

Since the transmitter and receiver polarizations have also been interchanged,

the principle of electromagnetic reciprocity yields the relations

a (GRI eTl —¢R) = I8

LR RL wT’eR'¢R)

Ann (GR, 6T, -¢R) = s (ST, BR, ¢R)

and (26)

a. 0., 0., -9) = a_ (0

Lk - R R L T’ eR' ¢R) .

The polarization reversal symmetry relation in Equation 3 yields the receiver

azimuth reflection relations

a (GT, 6

LR R’ R RL

and (27)

a (6

RR T, GR, '¢ ) = a (e ’ eRr d)R) o

R LL T
Combining Equations 26 and 27 yields the aspect angle interchange relations

aLR (eRI GT’ ¢R) = aLR (eT' eRI ¢R) ’
rr Ore Opr Op) = apy Bgr O, dp) .

and (28)

20




arL (GR, GT, ¢R) = a

RL (8'1" eR' (bR) i

i.e., principally polarized scattering is invariant to an interchange of the
transmitter aspect angle GT and receiver aspect angi GR but orthogonally
polarized scattering is not. The radar aspect angle symmetry relations in
Equations 26 to 28 are summarized in Table 3.

Bistatic static range measurements are typically obtained in terms of the
bistatic measurement coordinates (T, B, y) [Ref. 3]. The coordinate system
used to display the measurements is illustrated in Fig. 4. ﬂi and ﬁs are the
incident and scattered wave unit normals, respectively. The fixed transmitter-
line-of-sight (TLOS) and receiver-line-of-sight (RLOS) define the bistatic
plane. The bistatic angle B(0 < B 5_1800) is the angle between the TLOS and
RLOS. The target is mounted on a turntable in the bistatic plane which rotates
360° during each measurement run. The turntable angle T(—180o < < 180°) is
the angle between B (the unit bisector of the TLOS and RLOS) and the projection
of Z (the unit vector in the direction of the target principal axis) on the
bistatic plane. The turntable angle is positive when the projection of Z in
the bistatic plane is on the receiver side of the bisector. The pitch angle
Y (-—90o LY < 900) is the angle between z and the bistatic plane. It is
positive when the projection of Z on fi (the unit normal to the bistatic plane
in the ﬁs X ﬁi direction) is positive.

The transformation between bistatic measurement coordinates and radar

aspect coordinates is given in Table 4. Notice that

¢p > = O @ Y-y

21




TABLE 3 \

RADAR ASPECT COORDINATE SYMMETRY RELATIONS

Aspect Angle Interchange

a - (BR, ST, ¢R) = W (eT, QR, ¢R)
i aRR (eR' GTI ¢R) &= aLL (eT ’ eRl ¢R)
! aRL ( eRl eTl ¢R) — aRL (eT ’ BR, ¢R)

] | Receiver Azimuth Reflection

-

It

a. (6 ’ eRI ‘¢R)

LR T apr, Opr Opr 0p)

are (ET, GR, -¢R) aLL(GT, GR, ¢R)

Electromagnetic Reciprocity

aLR (eRr eTI —¢R) aRL (eTI eR: ¢R)

a (eRI 6T' -¢R)

RR apr (Bpr Bgr 0Q)

apy, Opr O =0p) = ap (65, 8., 6p)

il e e L

i

22
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BISTATIC MEASUREMENT COORDINATES (7, B,y)

z forward directed principal axis unit vector of target
A
k; unit incident wave vector
A
kg unit scattered wave vector
g R i
b = T bistatic unit bisector
lks"kll
A A
A k'+ ki »
te —— bistatic unit tangent
lks* kil
A A A . .
n= pxt bistatic unit normal ‘
T  Dbistatic turntable angle -T<T<w |
|
bistatic angle OsBsw ]‘
y bistatic pitch angle -w/2sysw/2

Fig. 4. The bistatic measurement coordinate system.
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TABLE 4

RADAR ASPECT - BISTATIC MEASUREMENT COORDINATE TRANSFORMATIONS

cos

sin

cos

sin

cos

cos

cos

sin

= 7
cos BT cos BR sin GT sin GR cos ¢R

sin GT sin 6

sin B e ¢R

&
cos BR cos OT

2 cos Y cos(B/2)

cos GR - cos OT

2 cos Y sin(B/2)

Inverse Transformation

cos Y cos(T+B/2)

cos Y cos(T-B/2)

cos B - cos GT cos GR

sin GT sin BR

sin B

- - sin Yy
sin ST sin BR

24




e’ e

and (29)

i.e., a sign change in pitch angle is equivalent to a sign change in receiver
azimuth angle and a sign change in turntable angle is equivalent to an inter-
change in transmitter and receiver aspect angle. The bistatic measurement
symmetry relations summarized in Table 5 are obtained from the radar aspect

symmetry relations in Table 3 by using Equation 29.

[ ANPE




TABLE 5

BISTATIC MEASUREMENT COORDINATE SYMMETRY RELATIONS

Turntable Angle Reflection

a - (-1, B, V) = a (T, B, Y}
apg -1, B, Y) = a, (t, B, 7
aRL ('T: B' Y) ™ aRL (T' B: Y)

Pitch Angle Reflection

a. (., B, M)

aLR (T' BI -Y) RL

a t, Bx ¥

a {T, B, -Y) -

RR

Electromagnetic Reciprocity

a (-t, B, -y) = apn (T, 8, Y

ape (-t, B, -y) = acr (T B, )

a; (-t, B, -y) = oo (T Be %)




IX. INDEPENDENT CIRCULAR POLARIZATION MEASUREMENTS

In this section the principles of electromagnetic reciprocity and polar-
ization reversal symmetry are used to determine the minimum number of measure-
ments needed to completely characterize target scattering.

A. Bodies of Revolution

From the static measurement reflection relations in Table 5, it is seen
that for fixed y and B8, LR and RL static range patterns in T will always be
symmetric about T = 0. In contrast, RR and LI vatterns will be symmetric
about T = 0 only when Y = 0. However, since the TIL and RR patterns are
always mirror images of each other about T = N, only one of these measurements
need be made. In addition, negative pitch patterns can be obtained from posi-
tive pitch patterns (or vice versa) by using the rnolarization reversal sym-
metry relations. Therefore, for fixed B, three sets of 360o static patterns
(e.g., LR, RR and RL for 0 < Yy 5.900, -180° < T i'lao°) are sufficient to
completely characterize the target. However, since the LR and RL patterns

are symmetric about T = 0, measurement redundancy cannot be completely avoided.

The measurement redundancy inherent in 360° experimental static range
patterns can be avoided when making theoretical or computer calculations.
For fixed B four sets of 180° static patterns (e.a., LR, RR, RL and LL for
0<y< 90°, 0o S = 180°) are sufficient to completely characterize the
target. Negative pitch and turntable angle data can be obtained by using the

reflection relations in Table 5.

B. Arbitrary Targets

If a target is not a body of revolution, none of the symmetry relations

in Table 5 are applicable. For example, consider a target whose physical




. T ————

shape is a body of revolution but whose electrical properties vary in roll

angle p (modulo 27m) about the physical symmetry axis. The circular polari-

zation electromagnetic reciprocity relations are

aij(-r, Be *¥e D+ W) = aji(r, B ¥ D) - (30)

However, as the target rotates on the turntable, the incidence plane will not J
always be a symmetry plane. Therefore, the static patterns will not exhibit
polarization reversal symmetry. Consequently, unless the target has additional A
. symmetries in roll angle, all four static patterns over a 360° range of roll

4 angles are needed to completely characterize the target for a fixed lyl and

B. Measurement redundancy is avoided by using reciprocity to obtain negative

pitch patterns from positive pitch patterns (or vice versa).

28
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APPENDIX

-

POLARIZATION SYMMETRY OF INDUCED SURFACE CURRENT

-
The induced surface current J(r), on a perfectly conducting scatterer
with unit outward pointing normal n(r), is a solution of the inhomogeneous

integral equation [Ref. 2, p. 354]

{ A >i > > > >

i. 2fi(r) x H (x) = J(r) + 2i(x) xﬂds' [J(r") x VG(R)] (A1)

?’ where

F -ikR =

'_ G(R) = e R = 'r_;cl (A2)
4mR

. ’ . ) g g
is the free space scalar Green's function and H (r) is the incident magnetic
gn

surface field. The integral equation can be reduced to the form

®WE x D = B +ﬂds' @&, 2 - Im (A3)
where
> > > “~> > >
| (r, zt) = Y(R) K (rr r') ’
Y(R) = -2(ik + 1/R) -‘3—1‘2—'3’ ,
and (A4)
XE, ) = (6-R T-* v

= an o < > -
I is the unit dyadic %% + 99 + 22 and R=r - r' .




Gy
]
Gy
b
oGy

¥ = ¥ 3+ ¥ -
e o
and (AS5)
> @ > > S 4>
K = + + K + K
ee eo oe oo

where the subscripts e and o denote evenness or oddness with respect to the
3 <_* . s 3 :
y coordinate, e.q., Keo is even in y and odd in y'. (Only one subscript is

needed for Y because it is invariant with respect to an interchange of y and

y'.) Then for a surface which is symmetric about the y = 0 plane,

i 4y
I 7 +j]ds' [I‘ -3+ -J]
e e ee e eo o]

¥

N
=4
x
~
]




y2 - flx,z2) = 0 (a8)

is the equation of the surface, A is given by

2
- -
f « nfeng= Y[y f(x,z)] ]
| ¥ l 2
f |v[y® - £(x,2)]]
5 2yy - fxx - fzz
5 . (n9)
E 2
\’;y + f , + £ $
X z
Therefore,
A e ->
ne - n-[-
and (A10)
i, = ny9 .
For incident plane wave propagation perpendicular to the vy axis
. | 2 * i
H = H + H (All)
i |
is independent of y. Then since
e > > i % > i i P
AxH = n xH +n¢xH +H (n x¥) ' (A12)
j Sk Wb ot iy S Tk
2 > =l - i %
(A x H) = n, xH + H (n; x ¥)
e 3 1
and (A13)
e & g |
n xH = n x H .
( )O y9 l




Notice that

¥ + (A xH )o =0 : (al14)
Let
> e - g
R = (y-y")\y +R 5 (a15)
o 3
Then since 5 #
I > > <> > > >, 4
K. *E _+K_+E = (R-§)T-08 - (nle) {
\ ee eo oe oo
\rﬁ
I T - (;l 5 ) T Rmy - yn 99
I ee i | des '
|
I e e
;\ eo ) yn-l- ’
? -ﬁ A P g
= -n -
and (A17)

K y'n $9 - y'n ;* :
oo Yy Y

If 81 is a unit vector in the x-z plane, Equations Al7 and A7 can be

combined to yield

. S oA T e N, T S .
. el . T:e . e__l_ = ‘{’e[nl _L it Yny (eJ_ RJ.) (n_l. .1.)] ‘{’OY “yu ’

.

9.}"‘».9 -'b.-b

ee




y eo él z
él 3 R A
y oe él i

and

el_- FZQ él -We y'n, iy Wo [él

all other comb

We y'(;

Y n (& - R
enye_]_ J_ ’

==
= —We Y(él .

2
8 2 9@ -6 -,
LRSS i 5

A i
el? + Wo y'(nl

s R

(Al18) 1

_l_) (n_[_ _J_)] ’

l + yn —(e

ations being zero.

By combining Equations Al8, Al3 and A6 it is found that Jxo' Jzo and
J o are solutions of
> > i >
v - H = + ' § - T .
29 (nl x J_ ) _[[ds [ e 9)Jye
2 ->
* ¥ JJ_O]
and (a19)
= 3 i A % A i
2n & (9 xH, )= & -J +ﬂds' (& - T - 93
P SRR By = e - T,

whereas J_ , J and J
xe ze yo
Ta g A
2H ey = (np X §)
e |

+ 81.‘ T jlp] i

are solutions of

=é-J+[fds e. le

?
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\]




P >
0 = J +‘l7.ds' §$ e+
yo oe le

For incident parallel polarization the incident electric field is

polarized in the x-z plane and the incident magnetic field only has a

=
y component. Therefore, él = 0 and a solution to Equation Al9 is

->
k- J = 0
|o
‘ and (A21)
J = 0
ye

These solutions are unique except when w = ck is a resonant frequency of the
cavity formed by the bounding surface of the target. At resonance cavity
mode currents may exist. However, since cavity modes are nonradiating, they
can be ignored when primary interest is in the properties of far field

scattering. Therefore,

J and J are even in y
X z
and (a22)
J is odd in
y b
for parallel polarization.

For perpendicular polarization Hyl = 0 and the solution to Equation

A20 is
J. w0
qLe =
and (a23)
J = 0 3
yo




—_— T T——

Therefore,

J and J are odd in y
X z
(n24)

and

J 1is even in y
¥

for perpendicular polarization.
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